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f Faculty of Engineering. Nugata University, Niigata 950-21, Japans 

Received 27 September 1993 

Abstract An on-site tight-binding model in one dimension with a hierarchial distribution of 
site energies is studied. An infinite number of extended states are analytidy shown to exist by 
using both the Wce map for the Llilnsfer matrices technique and the real-space renOrmaliZation 
group approach. The energies conespondiug to these extended states constilute a dense set in the 
energy spectrum. Unlike the extended states in the usual deterministic aperiodic and disordered 
systems, the existence of the extended states in the hierarchical chain is believed to be dependent 
on the property of the entire lattice rather than that of a certain b i t e  cluster. 

Recently, there has been much interest in the problem of extended electron states in various 
one-dimensional (ID) non-periodic systems ranging from disordered systems [1,2] to a 
variety of deterministic aperiodic systems [3-101. In most cases, the extended states are 
identified by numerical calculation [1,3-7]. The analytical ,treatment is relatively limited. 
Up to very recently, Si1 et ol [lo] discussed analytically the condition under which the 
ID system can support the extended electron states [lo]. K e y  showed that if a certain 
finite cluster of atoms is distributed in some manner on a periodic host chain to make 
the resultant chain aperiodic, for some special discrete energy values, it is possible that 
these doping clusters will make identity contributions to the total~lransfer matrix [ l l ]  and, 
therefore, at these special energies, one may disregard the presence of the doping clusters 
and the remaining chain will still be periodic, which will evidently support  the extended 
states. A good example presented hy them is the so-called copper-mean aperiodic chain, 
which is shown to have an infinite number of extended states forming fragmented minibands. 
Clearly, this t y p  of extended electron states is due to the property of the doping clusters on 
the periodic host chain. For this type of extended state, one can further take into account the 
correlation effects of the clusters at larger and larger length scales by using the real-space 
renormalization group approach, and finally obtaining the entire spectrum of extended states 
[IO]. In this letter, we present an example in which the existence of the extended states 
seems to be dependent on the property of the entire lattice. K e y  cannot be treated using the 
idea of a certain type of doping cluster on a periodic host chain, and therefore we believe 
that they result from different physical fundamentals. 

The model considered here is the ID on-site tight-binding Schodinger equation on a 
spatially periodic lattice with a hierarchical distribution of site energies. The hierarchy of 
the site energies is defined by the inflation scheme 

SN+I = (SNAN)"-*SN (1) 
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0305470/93/231217+0607.50 @ 1993 IOP Publishing Ltd L1217 



L1218 Letter fo the Editor 

where SI = AT-' ,  Ai are an infinite set of constituent elements and mi > 2 are a set of 
integers defining the hierarchy. Let 3, = SNAN+I be the Nth-Mer hierarchical system 
with length LN = ni=, mi; the real hierarchical chain corresponds to the limit of X N  
as N -+ CO. Note that if we put mi = 2, inflation scheme (1) generates the usual regular 
uniform bifurcating hierarchical shucture, which has received considerable interest in recent 
years (see [ 121 for a review). The motion of the electron on this on-site tight-binding model 
is governed by 

N-I 

@(n + 1) + @(n - 1) + (Vn - E)@(n) = 0 (2) 

where @(n) and V,, denote, respectively, the amplitude of the wavefunction and the site 
energy at site n, and E is the eigen-energy of the electron. The diagonal elements V ,  are 
given by U k  if n is a site of type Ax, with k = 0, 1,2. . . .. The nearest-neighbour hopping 
matrix element is set equal to unity. Here we show analytically that the on-site tight-binding 
hierarchical model possesses infinitely many extended states. The existence of the extended 
states cannot be understood by the property of certain finite doping cluster on a periodic 
chain. On the contrary, they depend on the lattice as a whole. 

To proceed, we rewrite equation (2) in transfer matrix form [ll]: 

Note that one important property for the hierarchical system is that 

T(n)  = T ( n + L k )  ?I # p x Lk (4) 

where p and k are arbitrafy positive integers. The total transfer matrix of the Nth-order 
chain 3~ with length LN is defined as 

(5) 

The energy spectrum for the N-order periodic approximation of the infinite hierarchical 
chain is now taken to be the set [ll] {E I IxN(E)I < 1) with X N ( E )  = Tr[TN(E)1/2. By 
noting the fact that an (N + 1)th-order chain is equal to mN successive Nth-order chains 
except for the last site energy, it is easy to derive 

TN = T ( L N ) T ( L N  - I)...T(Z)T(l) . 

TN+I = ( I  + ANIo)(TN)" 

where AN = U N  - U N + ~ .  I is the 2 x 2 unit matrix and 

With the use of the relation 

for any unimodular matrix A ,  equation (6) leads to the following trace map 

xN+1 = c m , ( x N )  + CA,,(XN)ANYN/mN 

yN+I = C;,,(Xhl)YN/mN 
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where X N  = Tr(T,)/2, Y N  =Tr(roT~)/z, and Ci(x) is the Zth Chebyshev polynomial with 
the recursion relation 
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CdX) = bCf-l(X) - CI-dX) 

and the initial conditions C&) = 1 and CI(X) = x, whereas C;(x) = dCf(x)/dx.~ The 
initial conditions for the trace map are given by 

X; = ( E  - Uo)/2 yo = 1/2. (10) 

By using the property of Chebyshev polynomials, it is not difficult to find that the above 
trace map has the non-escaping orbits: Chx ( X K )  = 0, I x K + ~  I = 1 and YK+I = 0 with I 2 1 
and K > 0. The energy values giving rise to these orbits are apparently the allowed energies, 
i.e. in the spectrum [ l l l  for the infinite hierarchical chain since IimN,, IxN(E)I = 1. In 
the following, we will show that these eigen-energies correspond to extended states. 

For a particular energy E' which leads to C k x ( x ~ )  = 0, it follows from I x K + ~ I  = 1 
and yK+f = 0 that 

(1 1) 

with I > 1 and (YKJ a non-vanishing parameter dependent on K and I .  Therefore, for an 
Nth-order chain of length LN with N > K ,  

T ~ + ~  = w + aK,lro) 

With appropriate (periodic or antiperiodic) boundary conditions, the above formula implies 
@(O) = 0. Then equation (11) suggests 

@(q x LK+1)  = f&(O) = o  6(q x L K + I  + 1) = *@(I) (13) 

where q = 1.2, .'. . , L N / L K + l .  Taking into account equations (4) and (13) with q = 1, we 
have, for n # p x LK+I,  

Combination of (13) and (14) gives 

#(n + L K + ~  = *@(n) (15) 

where n can be any positive integer. Therefore, the eigenstate corresponding to energy E* 
is extended and periodic (with period LK+I or 2LKfl). In fact, the extendedness of the 
wavefunctions arises from the fact that q5(q x = 0. Since the wavefunction vanishes 
on these q x L K + ~  sites, it is not affected by the hierarchy introduced on these sites. The 
electron effectively 'feels' a periodic potential with period p = L K + I ,  which gives rise to 
the extended wavefunction in the whole hierarchical system. Clearly, as the system consists 
of an infinite number of site energies (ux with k = 0, 1,2, . . .), disregarding any finite types 
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of clusters will still leave us with an aperiodic system. As a matter of fact, no product 
of any finite number of consecutive transfer matrices T(n) offers identity contribution to 
the total transfer matrix, so we believe that the existence of the extended states is due to 
the property of the whole lattice rather than that of certain finite doping clusters on the 
periodic host chain. This is rather different from the extended states appearing in the usual 
deterministic aperiodic and disordered cases [IO]. 

As the problem involves a hierarchical distribution of site energies and possesses self- 
similarity, one may expect an understanding within the real-space renormalization group 
context. To this end, we may implement an exact decimation method, which will preserve 
the hierarchical structure. After decimating all A0 sites and relabelling the remaining ones, 
we are left with a new set of equations, which can be cast in the same form as the original 
one (Z), except that the original parameters E and uy are renormalized as follows 

where E = ( E  - uo)/Z. If for some particular energy values C&(E) = 0, then at these 
energies, U; = 0, the renormalized chain effectively consists only of one type of site with 
vanishing site energy and, therefore, there will be extended states for the whole system at 
these energies provided that these energies are allowed ones (see below). To determine 
the other extended states, one can consider the successive renormalized versions of the 
original chain. The hierarchical structure of the original lattice implies that one can apply 
the decimation procedure to every renormalized version (but with different rescaling factor 
ml). At any (k + 1)th stage of renormalization, a new set of energy values for which the 
eigenstates are extended can be found from Ckk(d’)) = 0, where E(’) = (E(’)--u!))/Z with 
E(’) and U!) denoting, respectively, the value of E and uo after k times of decimation. The 
expression of E(’) and U!’ can be obtained by successive iterations of the recursion relations 
similar to (16) with mo replaced by different ml at different consecutive decimation stage 1. 
As is shown below, the number of allowed energy values which satisfy CLk(dk)) = 0 and 
correspond to extended states increases with the progress of renormalization and finally, the 
totality of all these energies constitutes a dense energy set in the energy spectrum. 

There are still two questions. The first one is whether C’ (dK)) = 0 which leads to 
vanishing site energy at each site and Ckx ( x ~ )  = 0 which gives rise to the non-escaping 
orbit l i k ~ l - . ~  Ix,(E)[ = 1 in the dynamic trace map will be fulfilled at the same energy set. 
The second question is whether there are real energy values for which CAK(&) = 0 
or C k x ( x ~ )  = 0 holds. Let us first focus on the first question. After K times of 
renormalization, one has the following equation of motion 

?K 

@[(n + 1)LKI + 4[(n - 1)LKI + (ViK’ - E‘K’)@(nLK) = 0. (17) 

For n = 1, the above equation reads 

@(ZZK) + @(O) + (uiK) - E‘%”) = 0. (18) 

After some algebra, it is possible to have 
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On the other hand, equations (6) and (8) imply 

By applying the above equation to ($", it is straightforward to find 

Comparison of (19) and (21) yields 

L1221 

So, any energy value satisfying CLK (&) = 0 and giving rise to vanishing site energies 
will be an allowed energy since it also leads to a non-escaping orbit [Ill. 

Now we turn to the second question. For simplicity, we discuss the case with mi 2, 
for other cases the generalization is straightforward. From the trace map (9) and its initial 
conditions (IO), one sees that xr + +CO as E + &CO with I > 1. Again, from (IO) 
it happens that C;(xo(E)) = 4xo(E) = 0 has one real root, denoted by E0.1. With 
xl(E0.1) = -1 and limE,+-xl(E) = +CO, it follows that xl (E)  = 0 should have two 
distinct real roots, E1.1 < EO.] < E1.2. Similarly, limE,*-xZ(E) = +CO, together with 
xz(E0.1) = 1 and xz(E1.1) = xz (E1 ,~)  = -1 implies that X Z ( E )  = 0 should have four 
distinct real roots: Ex1 < E1.1 < E ~ z  < E0.1 < E2.3 < E1.z < E*.+ By induction, it is 
easy to show that XK(E) = 0 has 2K distinct real roots. For the general case, by exploiting 
the property of the Chebyshev polynomial, a similar discussion leads to the conclusion that 
C L X ( x ~ )  = 0 has 

(23) 

distinct real roots. Therefore, for the real hierarchical chain corresponding to the limit of 
SN as N -+ CO, there are, in fact, an infinite number of extended eigenstates, the totality 
of which constitutes a dense set in the allowed energy spectrum. 

To summarize, we have analytically shown the existence of infinitely many extended 
and periodic states which forms a dense energy set in the energy spectrum of ID hierarchical 
on-site tight-binding model. As the hierarchical system'is composed of an infinite number 
of constituents, we believe that these extended states are not a result of the property of 
certain finite clusters [lo], they are seemingly due to the pmperty of the whole lattice. For 
this type of extended states, the way in which to find the entire spectrum of the extended 
states has yet to be studied. 

- 
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